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ABSTRACT

Mechanical- and thermal-buckling analyses were performed on rectangular plates with central

cutouts. The cutouts were either circular holes or square holes. The finite-element structural analysis

method was used to study the effects of plate-support conditions, plate aspect ratio, hole geometry, and

hole size on the mechanical- and thermal-buckling strengths of the perforated plates. By increasing the

hole size, thermal-buckling strengths of the plates could be enhanced. The compressive-buckling

strengths of the plates could also be increased considerably only under certain boundary conditions and

aspect ratios. The plate-buckling mode can be symmetrical or antisymmetrical, depending on the plate

boundary conditions, aspect ratio, and the hole size. For the same cutout areas (i.e., same plate weight

density), the buckling strengths of the same-sized plates with square holes generally surpass those of the

plates with circular holes over the range of hole sizes. The results and illustrations provide vital informa-

tion for the efficient design of aerospace structural panels.
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side of square hole, in.

diameter of circular hole, in.

Young's modulus, lb/in 2

triangular combined membrane and bending element

quadrilateral combined membrane and bending element

shear modulus, lb/in 2

joint location (or grid point or node)

length of rectangular plates, in.

compressive force intensity in y-direction, lb/in.

structural performance and resizing finite-element computer program

temperature, °F

assumed temperature for material, °F

room temperature, T i. = 70 °F

thickness of plates, in.

width of plates, in.

rectangular Cartesian coordinates

coefficient of thermal expansion, in/in-°F

temperature increase, °F

Poisson's ratio

Subscripts

( )cr critical value at buckling

( )n n th iteration (n = 1, 2, 3...)



INTRODUCTION

In aerospace structures, cutouts are commonly used as access ports for mechanical and electrical

systems, or simply to reduce weight. Structural panels with cutouts often experience compressive loads

that are induced either mechanically or thermally, and can result in panel buckling. Thus, the buckling

behavior of those structural panels with cutouts must be fully understood in the structural design.

For an unperforated rectangular plate of finite extent (i.e., with finite length and finite width) under

uniform compression, the closed-form buckling solutions are easily obtained because the prebuckling

stress field is uniform everywhere in the plate. When a finite rectangular plate is perforated with a central

cutout (e.g., a circular or square hole), however, the buckling analysis becomes extremely cumbersome

because the cutout introduces a load-free boundary that causes the stress field in the perforated plate to be

nonuniform. Hence, the closed-form buckling solutions are practically unobtainable, and various approx-

imate methods had to be developed to analyze such perforated plates.

The buckling of flat square plates with central circular holes under in-plane edge compression has

been studied both theoretically and experimentally by various authors (refs. 1-12). The methods of theo-

retical analysis used by most of the past investigators (refs. 1-3, 5) were the Rayleigh-Ritz minimum

energy method and the Timoshenko method (ref. 13). However, except for Schlack (ref. 3) and Kawai

and Ohtsubo (ref. 5), the theoretical analysis methods used do not allow the boundary and loading condi-

tions to be precisely defined for larger hole sizes because the stress distributions of the infinite perforated

plate are used as the prebuckling stress solution for the finite perforated plate. Thus, most of the earlier

buckling solutions are limited to small hole sizes, and are not fit for studying the effects of different plate

boundary conditions on the buckling strengths of the finite plates with arbitrarily sized holes using those

approximate solutions.

Using the Rayleigh-Ritz method, Schlack (ref. 3) analyzed the buckling behavior of a simply-

supported square plate with a circular hole, subjected to uniform edge displacements with three arbitrary

displacement functions, and calculated the buckling displacements. The buckling loads were then calcu-

lated using the stress-strain relationships. Ritchie and Rhodes (ref. 7) studied the buckling behavior of

both square and rectangular simply-supported perforated plates. Their theoretical analysis employed an

approximate approach using a combination of Rayleigh-Ritz and finite-element methods. These methods

are reasonably accurate for small holes, but lose accuracy when dealing with larger holes. The results of

the analysis show that the buckling behavior of perforated rectangular plates is quite different from that of

perforated square plates, and that the buckling mode is dependent on the hole size. Kawai and Ohtsubo

(ref. 5) also studied the perforated square plates using the Rayleigh-Ritz procedure with the prebuckling

stress distribution determined by the finite-element method. To reduce the labor of numerical calcula-

tions, the double integrations in the energy procedure for each finite element were transformed into line

integrals around the element boundary using the well-known Gauss theorem.

To minimize the mathematical complexities, Nemeth (refs. 8-11) analyzed perforated square

orthotropic plates by converting the classical two-dimensional buckling analysis into an equivalent one-

dimensional analysis by approximating the plate displacements with kinematically admissible series. In

the analysis, the two unloaded edges were assumed simply supported, and the loaded edges were either

simply supported or clamped. This approximate buckling analysis predicted the buckling loads to within

10 percent of those calculated using the finite-element method. Nemeth's analytical and experimental

results (ref. 10) indicated that increasing the hole size in a given plate does not always reduce the
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buckling load.Usingthefinite-elementmethod,Lee et al. (ref. 12)examinedthebuckling behaviorof a
squareplatewith acentralcircularhole.Thestudies,however,werelimitedto smallholesizes.

As mentionedearlier,mostpasttheoreticalanalysesof perforatedplatesconsideredmainly thesquare
platesunder simply-supportedboundaryconditionsto minimize the mathematicalcomplexities.Like-
wise,most pastexperimentalstudieson perforatedplateswerelimited to squareplatesunder simply-
supportedboundaryconditionsbecauseof theneedto comparethetestdatawith theexistingtheoretical
results.Thepastinvestigations,in general,lackcomprehensiveinformationon thebucklingbehaviorof
rectangularplatesof arbitraryaspectratios,containingholesof arbitrarysizes,and supportedunderany
specifiedboundaryconditions.

With the availabilityof powerful tools suchasthewell-developed,finite-elementstructuralanalysis
computerprograms,it is now possibleto calculatetheprebucklingstressfields andthebuckling eigen-
valuesolutionsquiteaccuratelyfor thefinite rectangularplatesof anyaspectratios,containingcutoutsof
anygeometryandanyholesizes,underanyspecifiedboundaryandloadingconditions.

Thisreportinvestigatesthemechanical-andthermal-bucklinganalysesof rectangularplatescontain-
ing arbitrarily-sizedcentralcircularholesor squareholes.A finite-elementmethodwasusedto studythe
effectsof plate aspectratio, holegeometry,hole size,andplateboundaryconditionson themechanical-
andthermal-bucklingstrengthsof perforatedplates.

DESCRIPTION OF THE PROBLEM

The geometry of the perforated rectangular plates and different boundary conditions used in the

finite-element analysis are described as follows.

Geometry

Figure 1 shows the geometry of two types of perforated rectangular plates with length 1, width w,

and thickness t. The central cutout is either a circular hole with diameter d (fig. l(a)), or a central square

hole with side c (fig. 1 (b)). Table 1 lists the dimensions of various perforated rectangular plates analyzed.

Notice that all the plates have the same width, w = 20 in., and the same thickness, t = 0.1 in.

Table 1. Dimensions of perforated plates.

w, in. t, in. 1_ d_ c_

20 0.1 1.0 0N0.7 0N0.7

20 0.1 1.5 0_0.7 0_0.7

20 0.1 2.0 0_0.7 0_0.7

In table 1, the range 0 N 0.7 covers 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7. For a given plate aspect ratio, the 15 hole-size cases will provide 15 data points for plotting

each buckling curve in the (Ny)c,- vs. d/w (or c/w) plots. If the buckling curve has any sharp bends in
certain regions, however, additional data points for d/w (or c/w) values not listed in table 1 were gener-

ated to define those sharp bend regions more accurately.
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Boundary Conditions

The various boundary conditions considered in the mechanical- and thermal-buckling analyses are
described as follows.

Mechanical Buckling

For mechanical buckling (uniaxial compressive buckling), the four edges of the perforated plates are

either simply supported or clamped. The lower edge of the plate is kept stationary and the upper edge is

allowed to move freely in the loading direction (y-direction). The two unloaded edges are either con-

strained from the transverse in-plane motions (figs. 2(a) and 3(a)) (called fixed case), or unconstrained

from the transverse in-plane motions (figs. 2(b) and 3(b)) (called free case). The four cases of boundary

conditions considered in the analysis are as follows:

1. 4S fixed--four edges simply supported; the two side edges can slide freely along the lubricated

fixed guides (fig. 4(a)).

2. 4S free--four edges simply supported; the two side edges can slide freely along the lubricated

guides, which can have free in-plane transverse motions (fig. 4(b)).

3. 4C fixed--four edges clamped; the two side edges can slide freely along the lubricated fixed

clamping guides (fig. 5(a)).

4. 4C free--four edges clamped; the two side edges can slide freely along the lubricated clamping

guides, which can have free in-plane transverse motions (fig. 5(b)).

Thermal Buckling

For thermal buckling, the plates were subjected to uniform temperature loading. Two types of plate

boundary conditions were considered:

1. 4S fixed--four edges simply supported by fixed-edge supports (fig. 6(a)).

2. 4C fixed--four edges clamped by fixed-edge supports (fig. 6(b)).

FINITE-ELEMENT ANALYSIS

In the finite-element analysis, the structural performance and resizing (SPAR) finite-element com-

puter program (ref. 14) was used. Because of symmetry, only one quarter of the perforated plates were

modeled. The plates with circular holes were modeled with both triangular combined membrane and

bending elements (E33 elements) and quadrilateral combined membrane and bending elements (E43 ele-

ments). For the plates with square holes, only the square-shaped E43 elements were used. Two typical

quarter-panel finite-element models generated for a typical circular cutout case (1/w = 1.5; d/w = 0.2) and

a typical square cutout case (1/w = 1.5; c/w = 0.2) are shown, respectively, in figures 7 and 8.

For the circular hole cases, models with aspect ratio 1/w = 2 were generated by adding 100 additional

square FA3 elements to the square models (1/w = 1); and models with aspect ratio 1/w = 1.5 were gener-

ated by properly modifying the aspect ratio of those additional E43 elements in the models with 1/w = 2.
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Models with circular holes ranging from small to moderate sizes (called the basic models) were generated

by modifying the hole sizes without changing the number of elements in the annular domains around the

holes (fig. 7). By using this simple method of generating multiple models, the tangential-to-radial aspect

ratios of the elements in the annular domains will gradually increase with the increasing size of the holes.

Therefore, the models with large circular holes were generated from the basic models by carving out

some elements in the hole boundary regions of the basic models. Thus, creating larger holes would hardly

disturb the aspect ratios of the elements lying in the remaining annular domains. When the circular holes

diminish, 20 additional E33 elements were used to fill each hole cavity so that the models could represent

unperforated solid plates.

For the square-hole cases, all the models were generated from the solid plate models (basic models;

c/w = 0), which have the highest number of joint locations (JLOCs) and E43 elements. The models with

different hole sizes were then generated from the basic models by removing the proper number of the

square E43 elements around the square-hole boundaries. Also, to increase the model aspect ratios, more

square E43 elements were added to the square models.

Table 2 lists the sizes of the basic finite-element models from which numerous perturbed models

were generated.

Table 2. Sizes of the basic finite-element models.

Circular hole (0 < d/w < 0.6) Square hole (c/w = 0)*

1/w JLOC E33 E43 JLOC E43

1.0 951 32 271 441 400

1.5 1061 32 371 651 600

2.0 1061 32 371 861 800

Number of JLOC and E43 is maximum when c/w = O.

The material properties used in the finite-element analysis are those of monolithic Ti-6A1-4V

titanium alloy (ref. 15), listed in table 3.

Table 3. Material properties of Ti-6A1-4V titanium alloy (ref. 15).

70 OF 200 OF 300 OF 400 OF 500 OF 600 OF 700 OF 800 OF 900 OF 1000°F

E, lb/in 2 × 106 16.0 15.28 14.80 14.40 14.02 13.63 13.15 12.64 11.84 10.56

G, lb/in2× 106 6.20 5.83 5.65 5.50 5.37 5.20 5.02 4.82 4.52 4.03

v 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

_,in/in-°F × 10 6 4.85 5.00 5.10 5.19 5.27 5.36 5.44 5.52 5.59 5.62

The data in table 3 are plotted in figure 9 to show the nonlinearity of the temperature-dependent

material properties.
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MATERIAL PROPERTY ITERATIONS

In the thermal-buckling analysis, calculations of buckling temperatures require material property

iterations. Figure 10 shows a graphical iteration process for finding the buckling temperatures ATcr for a

typical case of a square panel (1/w = 1) with circular hole size d/w = 0.7 under a 4S free boundary condi-

tion. The buckling temperature ATcr is plotted against the assumed material temperature T a. The 45-deg

line represents the solution line for the buckling temperature ATcr.

For example, if the assumed material temperature T a agrees with the calculated buckling temperature

ATcr + T r (T r = 70 °F), then the data point of ATcr will fall right on the 45-deg solution line. In the first

iteration, the material properties at room temperature, (Ta) 1 = T r , were used to calculate the first buck-

ling temperature (ATcr) 1"The second iteration then uses the material properties at any other temperature,

say (Ta) 2 = 200 °F, to update the input material properties for the calculations of the second buckling

temperature (ATcr)2. In the third iteration, the two buckling data points (ATcr)l and (ATcr) 2 were

connected with a straight line to locate the intersection point with the 45-deg solution line. Then, this

intersection-point temperature was used to update the material properties for the calculations of the third

buckling temperature (ATcr)3. This iteration process is to continue until the n fh calculated buckling

temperature (ATcr)n data point falls right on the 45-deg solution line.

From the geometry of figure 10, (ATc,,)3 may be expressed as a function of (ATcr)l and (ATcr)2 as

(ATcr)l

(ATcr)3 = (ATcr) 2- (ATcr) 1 (1)
1-

(Ta) 2 - (Ta) 1

For the present material, the (ATc,,)3 data point (less than 200 °F) would fall practically on the

45-deg solution line, giving an acceptable solution for ATcr. Namely, the value of (ATcr) 3 calculated

from the third material iteration would practically agree with that obtained from equation (1) because the

material property curves (especially E curve, fig. 9) are almost linear in the range 70 < T < 200 °F.

RESULTS

The following sections present the results of the finite-element mechanical- and thermal-buckling

analysis of rectangular plates with circular and square holes.

Solution Accuracy

For checking the finite-element solution accuracy, the finite-element buckling solutions for simply-

supported solid plates (no holes) of different aspect ratios under uniaxial compression were compared

with the corresponding classical buckling solutions (ref. 13). Table 4 shows the results. The classical

cases actually correspond to the 4S free cases, which are under uniaxial loadings. The 4S fixed cases are

slightly under biaxial loadings and, therefore, were not used for solution-comparison purposes.



Table 4. Comparison of finite-element and classical buckling solutions for simply

supported rectangular solid plates under uniaxial compression.

(Ny)cr, lb/in.

Circular hole Square hole Timoshenko

1/w Buckling mode model (d = 0) model (c = 0) (ref. 13)

1.0 Symmetrical 145.5983 145.5858 145.5854

1.5 Antisymmetrical 157.9806 157.9707 157.9703

2.0 Antisymmetrical 145.5891 145.5866 145.5854

The very close correlation of the finite-element and the classical buckling solutions shown in table 4

indicates the adequacy of the finite-element modeling, and provides great confidence in the accuracy of

the finite-element buckling solutions for the perforated plates presented in this report.

Plates With Circular Holes

For plates with circular holes, three cases are considered: mechanical buckling fixed, mechanical

buckling free, and thermal buckling.

Mechanical Buckling for Fixed-Boundary Cases

Figures 11-16, respectively, show the compressive buckling loads (Ny)cr plotted as functions of hole

size d/w (figs. 11, 13, and 15), and the associated buckling mode shapes (figs. 12, 14, and 16) for the

plates with circular holes under 4S fixed and 4C fixed boundary conditions. Only figure 11 shows typical

finite-element buckling solution data points.

For the 4S fixed cases, the antisymmetrical buckling curves always lie considerably above the sym-

metrical buckling curves for all plate aspect ratios (figs. 11, 13, and 15), and therefore, the buckling mode

shapes are always symmetrical (figs. 12(a), 14(a), and 16(a)). The actual buckling loads (Ny)c r (sym-

metrical) for all plate aspect ratios monotonically decrease slightly from their respective solid plate val-

ues as the hole sizes increase (figs. 11, 13, and 15).

For the 4C fixed cases, the symmetrical and antisymmetrical buckling curves entangle each other (or

mutually intersect), causing the actual buckling curves (for the lowest (Ny)c r values) to be composite
curves consisting of symmetrical and antisymmetrical buckling curves segments. Thus, the buckling

mode shapes could be either symmetrical or antisymmetrical (figs. 12(b), 14(b), and 16(b)) depending on

the hole sizes and the plate aspect ratios. For larger holes, the secondary or local buckling modes start to

appear at the hole boundaries (figs. 12(b), 14(b), and 16(b)).

For a square plate (fig. 11) of the 4C fixed case, the lowest buckling load (Ny)c r decreases from that

of the solid plate (d/w = 0) as the hole starts to initiate and grow in size. The value of (Ny)c,, reaches its

minimum value in the vicinity of d/w = 0.2, and then continues to increase and changing buckling mode

at larger hole sizes. Beyond d/w = 0.4, the buckling load (Ny)c,, becomes greater than that of the solid

square plates (d/w = 0).
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Forrectangularplates(figs. 13and15)of the4C fixed cases,thecompositebucklingcurvesarewavy
andbentupwardasthe hole sizeincreases.The lowestbuckling loads (Ny)c,,increaseinitially asthe
holesstartto grow in size,thenchangedmodeandreachedtheir respectiveminimumvaluesnearthehole
sized/w = 0.2. Beyond hole size d/w = 0.3, the (Ny)c,, values exceed their respective values of the solid

rectangular plates (d/w = 0). The degrees of increases in the (Ny)c,, values for the rectangular plates
(figs. 13 and 15), however, are not as pronounced as the square plate case (fig. 11).

Mechanical Buckling for Free-Boundary Cases

Figures 17-22, respectively, show the changes of the compressive buckling loads (Ny)c r with hole

size d/w (figs. 17, 19, and 21) and the associated buckling mode shapes (figs. 18, 20, and 22) of the plates

with circular holes under 4S free and 4C free boundary conditions. The symmetrical and antisymmetrical

buckling curves intersect at certain hole sizes (figs. 17, 19, and 21). For the 4C free cases, the buckling

mode shapes of the plates with larger holes (figs. 18, 20, and 22) show complex buckling modes consist-

ing of global and pronounced local buckling at the hole boundaries.

For a square plate (fig.17, which represents the most extensively studied geometry), the buckling

loads (Ny)c,, for both 4S free and 4C free cases decrease monotonically with the hole size and never

increase with the hole size like the 4C fixed case (fig. 11).

For rectangular plates (figs. 19 and 21), the buckling loads (Ny)c r for both the 4S free and 4C free

cases increase at larger hole sizes. This effect is more conspicuous for the 4C free cases (especially for

aspect ratio 1/w = 2, shown in fig. 21) than for the 4S free cases.

Thermal Buckling

Figures 23-28 show the buckling temperatures ATc,,, plotted as functions of the hole size d/w

(figs. 23, 25, and 27), and the associated buckling mode shapes (figs. 24, 26, and 28) for the plates with

circular holes. The lowest buckling temperatures ATc,, decrease slightly, as the hole size grows initially,

and then increase at larger hole sizes. This effect is more pronounced for the 4C cases than for the 4S

cases. The increase of ATc,, at larger hole sizes is the most pronounced for the square plates under 4C

boundary condition (fig. 23), and the value of ATc,, at hole size d/w = 0.7 reaches as high as five times

the value of ATc,, of the unperforated square plate (d/w = 0).

Plates With Square Holes

Analyses of plates with square holes were also made for the three case types: mechanical buckling

fixed, mechanical buckling free, and thermal buckling.

Mechanical Buckling for Fixed-Boundary Cases

Figures 29-34, respectively, show the variations of the compressive buckling loads (Ny)c r with the

increase of the hole size c/w (figs. 29, 31, and 33) and the associated buckling mode shapes (figs. 30, 32,

and 34) for the plates with square holes under 4S fixed and 4C fixed boundary conditions. The overall



bucklingbehaviorof plateswith squareholesis very similar to that of theplateswith circularholes.In
comparisonwith the circular hole cases,however,the squarehole caseshaveslightly higherbuckling
loadsat largerholesizes,especiallyfor theaspectratio 1/w = 1.5 (compare 4C fixed cases in figs. 13 and

31). At large hole size (figs. 30, 32, and 34) for 4C cases, the buckling mode shapes exhibit both global

and local buckling modes.

Mechanical Buckling for Free-Boundary Cases

Figures 35-40 show the compressive buckling loads (Ny)c r plotted against the hole size c/w

(figs. 35, 37, and 39) and the associate buckling mode shapes (figs. 36, 38, and 40), for the plates with

square holes under 4S free and 4C free boundary conditions. Again, the buckling behavior of the square

hole cases is very similar to that of the corresponding circular hole cases. Similar to the fixed cases, the

local buckling modes show up clearly at larger hole sizes under the 4C boundary condition.

Thermal Buckling

Figures 41-46, respectively, show the buckling temperatures ATc,, as functions of hole size c/w

(figs. 41, 43, and 45) and the associated thermal-buckling modes (figs. 42, 44, and 46) for the plates with

square holes. Again, the 4C boundary condition causes secondary local buckling modes to show up at

large hole size for the square plate (fig. 42). For the rectangular plates (figs. 44 and 46), the local buckling

modes are almost invisible.

Comparison of Buckling Strengths

The buckling strengths of the plates with circular holes will be compared with those of the plates with

square holes under the same weight density conditions. Therefore, for a given aspect ratio of the perfo-

rated plates (no change in width w), the area of the square hole was set equal to that of the circular hole by

adjusting the side c of the square hole according to the relationship

d 2
(2)

Thus, before the comparison of buckling strengths could be made, the abscissa c/w of figures 29, 31,

33, 35, 37, 39, 41, 43, and 45 must first be converted to the equivalent d/w using equation (2). Namely,

the data points for the square hole cases must be shifted slightly toward the right because the equivalent

d/w is slightly greater than c/w in view of equation (2).

Figures 47-49 compare the compressive buckling strengths of the two types of perforated plates

under 4S fixed and 4C fixed conditions. At large hole sizes, the square hole cases exhibit higher buckling

strengths than the respective circular hole case.

For the 4S free and 4C free boundary conditions, the square plates with square holes (fig. 50) have

higher compressive buckling strengths than those with circular holes. For the perforated rectangular

plates (figs. 51 and 52), the square hole cases give slightly higher buckling strengths at moderate hole

sizes than the circular hole cases. The reverse is true, however, for hole sizes greater than d/w = 0.5.
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Figures53-55 comparethethermal-bucklingstrengthsof thetwo typesof perforatedplates.Again,
theplateswith squareholesexhibit higherthermal-bucklingstrengthsthan thosewith circularholesfor
all thehole sizesandboundaryconditions.

DISCUSSION

The buckling behavior of plates with central holes as presented is quite peculiar because, under

certain boundary conditions (especially cases with clamped edges) and plate aspect ratios, the mechani-

cal- and thermal-buckling strengths of the perforated plates, contrary to expectation, increase rather than

decrease as the hole sizes grow larger. The conventional wisdom is that, as the hole sizes increase, the

plates lose more materials and become weaker. Therefore, the buckling strengths were expected to

decrease as the hole sizes increase. This was not the case. Such peculiar buckling phenomenon of the

perforated plates may be explained as follows.

When the hole size becomes considerably large relative to the plate width, most of the compressive

load is carried by the narrow side strips of material along the plate boundaries. As is well known, a

stronger plate boundary condition (e.g., clamped rather than simply-supported boundaries) increases

the buckling strength, while the higher stress concentration decreases the buckling strength. Thus, which

effects become dominant will determine the increase or decrease of the buckling strengths of the

perforated plates.

For the square-hole cases, the load-carrying narrow side strips along the plate boundaries are

practically under uniform compressive stress fields. For the circular-hole cases, the narrow compressed

side strips are under stress concentration, which reduces the buckling strengths. This fact may explain

why, for most of the cases studied (except figs. 51 and 52), the buckling strengths of the plates with square

holes increase more at larger hole sizes than the plates with circular holes having the same weight density.

The unusual buckling characteristics of the perforated plates offer vital applications in aerospace

structural panel design. Namely, by opening holes of proper sizes in aerostructural panels for weight

saving, their buckling strengths can be boosted simultaneously. Thus, with a single stone, one can shoot

down two birds.

CONCLUDING REMARKS

Finite-element mechanical- and thermal-buckling analyses were performed on plates containing

centrally located circular and square holes. The effects of plate aspect ratio, hole geometry, hole size, and

plate support conditions on the mechanical- and thermal-buckling strengths and buckling mode shapes

were studied in great detail. The key findings of the analysis are as follows:

• The buckling mode shapes of the perforated plates can be symmetrical or antisymmetrical

depending on the hole sizes, plate aspect ratios, and plate boundary conditions.

Increasing the hole size does not necessarily reduce the mechanical- and thermal-buckling

strengths of the perforated plates. For certain plate aspect ratios and plate support conditions,

mechanical- and thermal-buckling strengths increase with the increasing hole sizes.

10



• For mostcasesunderthe sameweight densityconditions,the mechanical-andthermal-buckling
strengthsof theplateswith squareholesareslightlyhigherthanthoseof thecorrespondingplates
with circularholesat increasingholesizes.

• The clamped boundary conditions more effectively enhancethe mechanical-and thermal-
bucklingstrengthsof theperforatedplatesat largerholesizesthanthesimply-supportedboundary
conditions.

Dryden Flight Research Center

National Aeronautics and Space Administration

Edwards, California, May 27, 1997
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Figure 1. Rectangular plates with central cutouts.
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(a) Fixed case--two vertical edges with no in-plane transverse motions.
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(b) Free case--two vertical edges with free in-plane transverse motions.

Figure 2. Fixed and free boundary conditions for two vertical edges; circular cutout case (simply

supported or clamped).
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(a) Fixed case--two vertical edges with no in-plane transverse motions.

Ny

ttttttttt ,r,y
970892

(b) Free case--two vertical edges with free in-plane transverse motions.

Figure 3. Fixed and free boundary conditions for two vertical edges; square cutout case (simply supported

or clamped).
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(a) 4S fixed.
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(b) 4S free.

Figure 4. Two types of boundary conditions for simply-supported vertical edges.
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(b) 4C free.

Figure 5. Two types of boundary conditions for clamped vertical edges.
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(b) 4C fixed.

Figure 6. Two types of boundary conditions used for thermal buckling.
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Figure 7. Quarter-panel, finite-element model for rectangular plate with circular hole; 1/w = 1.5, d/w = 0.2.
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Figure 8. Quarter-panel, finite-element model for rectangular plate with square hole; 1/w = 1.5, c/w = 0.2.
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Figure 9. Temperature-dependent material properties of Ti-6AI-4V titanium alloy.
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Figure 10. Graphical representation of buckling temperature iteration process.
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Figure 11. Compressive buckling loads as functions of hole size; circular holes; fixed edges.

N Ny

d/w = 0.2
970903a

Ny

d/w = 0.6
970903b

(a) 4S fixed.

NyN

d/w = 0.2
970904a

Ny

d/w = 0.6
970904b

(b) 4C fixed.

Figure 12. Buckled shapes of square plates with circular holes under compression; 1/w = 1; fixed edges.
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Figure 13. Compressive buckling loads as functions of hole size; circular holes; fixed edges.
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Figure 14. Buckled shapes of rectangular plates with circular holes under compression; 1/w = 1.5; fixed

edges.
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Figure 15. Compressive buckling loads as functions of hole size; circular holes; fixed edges.
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Figure 16. Buckled shapes of rectangular plates with circular holes under compression; 1/w = 2; fixed

edges.
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Figure 17. Compressive buckling loads as functions of hole size; circular holes; free edges.
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Figure 18. Buckled shapes of square plates with circular holes under compression; 1/w = 1; free edges.
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Figure 19. Compressive buckling loads as functions of hole size; circular holes; free edges.
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Figure 20. Buckled shapes of rectangular plates with circular holes under compression; 1/w = 1.5; free

edges.
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Figure 21. Compressive buckling loads as functions of hole size; circular holes; free edges.
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Figure 22. Buckled shapes of rectangular plates with circular holes under compression; 1/w = 2; free edges.
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Figure 23. Buckling temperatures as functions of hole size; circular holes.
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Figure 24. Buckled shapes of uniformly heated square plates with circular holes; 1/w = l.
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Figure 25. Buckling temperatures as functions of hole size; circular holes.
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Figure 26. Buckled shapes of uniformly heated rectangular plates with circular holes; 1/w = 1.5.
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Figure 29. Compressive buckling loads as functions of hole size; square holes; fixed edges.
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Figure 30. Buckled shapes of square plates with square holes under compression; 1/w = 1; fixed edges.
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Figure 31. Compressive buckling loads as functions of hole size; square holes; fixed edges.
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Figure 32. Buckled shapes of rectangular plates with square holes under compression; 1/w = 1.5; fixed

edges.
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Figure 33. Compressive buckling loads as functions of hole size; square holes; fixed edges.
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Figure 34. Buckled shapes of rectangular plates with square holes under compression; 1/w = 2; fixed edges.
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Figure 36. Buckled shapes of square plates with square holes under compression; 1/w = l; flee edges.
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Figure 37. Compressive buckling loads as functions of hole size; square holes; free edges.
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Figure 38. Buckled shapes of rectangular plates with square holes under compression; 1/w = 1.5; free

edges.
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Figure 39. Compressive buckling loads as functions of hole size; square holes; free edges.
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Figure 40. Buckled shapes of rectangular plates with square holes under compression; 1/w = 2; free edges.
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Figure 41. Buckling temperatures as functions of hole size; square holes.
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Figure 42. Buckled shapes of uniformly heated square plates with square holes; 1/w = 1.
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Figure 44. Buckled shapes of uniformly heated rectangular plates with square holes; 1/w = 1.5.

36



35

30

25

20

AoT r'
15

10

-- Symmetric buckling
--- Antisymmetric buckling

AT

4C

4S
I

4S

I I I I I I I I
0 .1 .2 .3 .4 .5 .6 .7 .8

C/W 970953

Figure 45. Buckling temperatures as functions of hole size; square holes.

_/w = 2.0

c/w = 0.2
970954a

(a) 4S fixed.

c/w = 0.6
970954b

c/w = 0.2 c/w = 0.6

(b) 4C fixed.

970955a 970955b

Figure 46. Buckled shapes of uniformly heated rectangular plates with square holes; 1/w = 2.
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Figure 47. Comparison of compressive buckling strengths of square plates with different geometrical

cutouts; fixed edges.
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Figure 48. Comparison of compressive buckling strengths of rectangular plates with different geometrical

cutouts; fixed edges.
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Figure 49. Comparison of compressive buckling strengths of rectangular plates with different geometrical

cutouts; fixed edges.
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Figure 50. Comparison of compressive buckling strengths of square plates with different geometrical
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Figure 51. Comparison of compressive buckling strengths of rectangular plates with different geometrical

cutouts; free edges.
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Figure 52. Comparison of compressive buckling strengths of rectangular plates with different geometrical

cutouts; free edges.
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Figure 53. Comparison of thermal buckling strengths of square panels with different geometrical cutouts.
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Figure 54. Comparison of thermal buckling strengths of rectangular panels with different geometrical

cutouts.
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Figure 55. Comparison of thermal buckling strengths of rectangular panels with different geometrical
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42



REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Re )orts, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORTTYPE AND DATES COVERED

March 1998 Technical Memorandum

4.TITLE AND SUBTITLE 5. FUNDING NUMBERS

Mechanical- and Thermal-Buckling Behavior of Rectangular Plates With
Different Central Cutouts

6. AUTHOR(S)

William L. Ko

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Dryden Flight Research Center
RO. Box 273

Edwards, California 93523-0273

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU 522 32 34

8. PERFORMING ORGANIZATION

REPORT NUMBER

H-2206

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TM-1998-206542

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified--Unlimited

Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Mechanical- and thermal-buckling analyses were performed on rectangular plates with central cutouts. The

cutouts were either circular holes or square holes. The finite-element structural analysis method was used to

study the effects of plate-support conditions, plate aspect ratio, hole geometry, and hole size on the mechanical-

and thermal-buckling strengths of the perforated plates. By increasing the hole size, thermal-buckling strengths

of the plates could be enhanced. The compressive-buckling strengths of the plates could also be increased

considerably only under certain boundary conditions and aspect ratios. The plate-buckling mode can be

symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For

the same cutout areas (i.e., same plate weight density), the buckling strengths of the same-sized plates with

square holes generally surpass those of the plates with circular holes over the range of hole sizes. The results

and illustrations provide vital information for the efficient design of aerospace structural panels.

14. SUBJECTTERMS

Buckling mode shapes, Mechanical buckling, Plates with circular holes, Plates

with square holes, Thermal buckling

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OFTHIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road,

Linthicum Heights, MD 21090; (301)621-0390

15. NUMBER OF PAGES

48

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102


